

Supercritical Fluid Extraction & Chromatography (SFE-SFC) The Critical Promise for a Greener Tomorrow

November 2nd, 2021

Introductions

Marisa Feller Eurofins Food Chemistry Testing (EFCT) Vitamin Testing Business Unit Manager

Richard Sanders Eurofins US Food Laboratory Network National Business Development Director

Conflicts of Interest & Transparency Statements

- We are not endorsing any specific instrument company(s) over another
- We are not representing any government, industry, and academia groups other than the Eurofins Laboratory Network
- We love food & drink, take supplements and care about the planet. Testing for life is a real thing.

Who is Eurofins Scientific

In 1987, Eurofins was founded when Gilles Martin, the current Group CEO, purchased the rights to the ground-breaking testing technology SNIF-NMR® from the University of Nantes. It uses Nuclear Magnetic Resonance to detect whether sugar has been added during the wine-making process to increase the alcohol content. Certain such additions were not detectable by any other existing method.

In the following years, the SNIF-NMR® technology applications were broadened to a wider range of products than the original wine test, such as fruit juices, natural flavours and other non-alcoholic beverages, picking up sophisticated frauds that traditional testing methods failed to detect.

Now, over 30 years later, building on its research and innovation roots since its foundation, Eurofins has continue to develop many new testing technologies that have a positive impact on day-to-day life.

eurofins

Today the Global Eurofins Group is a leading provider of analytical services

- 900 Laboratories
- 50 Countries
- 55,000 Staff
- 200,000 Analytical methods
- 10.8 million sq ft of laboratories
- 450 million tests performed each year to evaluate the safety, identity, composition, authenticity, origin, traceability, purity of biological substances and products, and clinical diagnostic services.

eurofins

https://www.eurofins.com/about-us/

OUR VISION (Our long-term aspiration): To be the Global Leader in Testing for Life.

OUR MISSION (*Why we are here - the cause/purpose of our business*): To contribute to a safer and healthier world by providing our customers with innovative and high quality laboratory, research and advisory services whilst creating opportunities for our employees and generating sustainable shareholder value.

OUR VALUES (*W hat we stand for/what is important for us):* Customer Services, Competence and Team Spirit, Quality and Integrity

OUR SUSTAINABILITY PROMISE (How we approach corporate sustainability): As an organization, embedding corporate sustainability principles in our business strategy and the way we operate is an essential component in both creating long-term value and achieving our mission of contributing to a healthier and safer world.

FAST TECH

- Introduction to Super Critical Fluid (SF)
- SFC, GC, HPLC A Brief History
- A Name To Remember

BETTER TECH

- Green Chemistry
- Method Overview
- Poster Session

UNCOMPRIMISING TECH

- Development Guidelines & Accreditations
- How my samples compare
- Codes To Enter

Part 1

FAST TECH

What Do These Three Have In Common

Introduction to Super Critical Fluid

	Rate of Diffusion (cm²/s)	Density (g/cm³)	Viscosity (g/cm ⋅ s)
Gas	10 ⁻¹	10 ⁻³	10-4
Supercritical Fluid	10 ⁻⁴ - 10 ⁻³ Liquid Like	0.2-0.8 Liquid Like	10 ⁻⁴ Gas Like
Liquid	10 ⁻⁵ - 10 ⁻⁶	1	10 ⁻²

High diffusivity and density with low viscosity

Faster flow rates with lower pressure

Dissolve better, move faster with less pressure concern

HOURS TURNED INTO MINUTES

ے 🔾		6	
- • • • • • • • •	еп	rot	inc
	C U		

Compound	Tc (C)	Pc (Mpa)
NH3	132	11.28
CO2	31	7.38
N2O	36	7.24
H2O	374	22.06
Propane (C3H8)	97	4.25
Hexane (C6H14)	234	2.97

CO₂ Is The Choice

Low Tc and Pc Non toxic Non flammable Abundant Supply Easy Removal GRAS

A brief history of the unifying chromatography

The late 1960's was the dawn of commercially available chromatography units. Three main systems were being discussed in the international academic world. Each system was characterized by the mobile phase of the system.

- Gas Mobile Phase Chromatography
- Supercritical Fluid State Mobile Phase Chrom
- Liquid Mobile Phase Chromatography

Where the chromatography family split

- GC 1967 First commercially available integrated system
- SFC 1967-1970 Delays due to factor error, first generation engineering issues
- HPLC 1968 First commercially available integrated system

Also making its debut in 1967 – the Science Tricorder Coincidence Probably not.....

James Lovelock - Amazon Rainforest - Supercritical Thought

Lovelock's GC Went to Mars on Viking 2 Mission Lovelock's Gaia hypothesis – where Earth is described as a self-regulating system

It's Easy Being Green

Lovelock first theorized using CO2 as a supercritical chromatographic mobile phase in 1958

Part 2

BETTER TECH

Introduction to Super Critical Fluid

The 12 Principles of Green Chemistry

- Prevent Waste
- Design Safer Chemicals and Products
- Design Less Hazardous Chemical Syntheses
- Use Safer Solvents/ Reaction Conditions
- Increase Energy Efficiency
- Use Renewable Feedstock
- Design Chemicals and Products that Degrade After Use
- Minimize the Potential for Accidents
- Analyze in Real Time to Prevent Pollution
- Use Catalysts, Not Stoichiometric Reagents
- Maximize Atom Economy
- Avoid Chemical
 Derivatives

U.S. EPA Green Chemistry Program Washington, DC 20460

www.eps.gov/greenchemistry emuli: greenchemistry@epo.gov SFC using CO₂ meets many of the EPA Green Chemistry objectives

Non toxic Non flammable Abundant Supply Easy Removal GRAS 95 % - 98% Less Solvents* Reduced Exposure*

*Dichloromethane, chloroform, hexane, DMSO, conc. KOH

OUR MISSION

Our international gatherings promote environmentally sustainable chemical R&D by bringing together thought leaders to present the latest research and industrial accomplishments in SFC and SFE.

Significant reduction in analyte degradation elements due to minimized exposure to air, light, reagents, heat, transfer steps etc.

References: Photo comparison of sample preparation and Nexera UC sample preparation from Supercritical Fluid Extraction/Chromatograph System brochure

Collect an aliquot of finely ground / prepared sample Add water, stable isotope internal standard and alcohol Combine the slurry with a water absorbing material Transfer to an extraction cell, load on instrument for analysis

Shimadzu Nexera UC (SFE/SFC) System

- CO2 pump
- Quadratic modifier pump
- Isocratic makeup pump
- Extractor
- Column oven
- 2 Back pressure regulators

AB Sciex 6500 plus MSMS with APCI source

First Wave of Matrices and Analytes

Infant Formula Powder

Supplements

Tablets Liquids Powders Soft-gels

Vitamin A Acetate + cis A Acetate Vitamin A Palmitate + cis A Palmitate Vitamin E (alpha Tocopherol) Vitamin E Acetate Vitamin E Succinate Vitamin D2 + pre D2 Vitamin D3 + pre D3 Vitamin K1 Vitamin K2-MK4 Vitamin K2-MK7

Table 1. Result Comparison of a Vitamin Gel Capsule

Analysis Method	HPLC-FLD	SFE-SFC-MSMS, i-Amylose-1 Column	SFE-SFC-MSMS, 1-AA Column
n	20	11	12
<i>Trans</i> Vitamin K2-MK7 Average Result (mcg/g)	245	252	244
RSD	7.4	7.4	7.4

Total Vitamin K2-MK7 (cis+trans) Trans Vitamin K2-MK7 Sample (mcg/g) (mcg/g) Х RSD Х RSD Chewable tablet 18.7 1.0 0.433 5.2 3.2 55.4 4.5 2.16 Capsule 1 2.9 Capsule 2 42.7 3.9 1.73

Figure 3. Analysis of *trans* vitamin K2-MK7 in a vitamin capsule by SFE-SFC-MSMS. Lux i-Amylose-1 column. Internal standard on right.

Detection and quantitation are performed by MSMS with an APCI source. In the workflow of this method, the sample is initially analyzed using the Torus 1-AA column for vitamin K1, K2-MK4, K2-MK7, D2 and D3. The presence of vitamin K2-MK7 *cis* isomers are readily seen. The sample is then reanalyzed with the Lux-i-Amylose-1 column to resolve the vitamin K2-MK7 *trans* isomer from the *cis* isomers.

Table 2. Analysis of Locally Purchased Supplements, n=3 for Each Test

т	able 1. Analysis o	f CRMs	by SFE-SFC-MSN	IS	Sample Type	Vitamin	
CRM	Vitamin	N	Average Result (mcg/g)	NIST range (mcg/g)	Vitamin Capsule	E Succinate A Acetate	
NIST 1869	E Acetate	16	183	157-191	Breakfast Cereal	E+E Acetate A Palmitate	
	E	16	63.2	50.6-61.2	Vitamin	K1	
	A Acetate	12	12.3	9.8-12.4	Softgel	K2-MK4	
	A Palmitate	12	17.3	14.2-20		K2-MK7	
	К1	12	1.33	1.04-1.40	Tablet	D3	
NIST 3280	E Acetate	12	19500	17900-24900	Vitamin Softgel	D3	
	D2	12	6.40	6-11.2	Vitamin	E Acetate	
	K1	12	21.1	20.6-25	Tablet	A Acetate	
					Infant Formula	E Acetate	

Table 2. Comparison of SFE-SFC-MSMS Method Results to Official Methods						
ample Type	Vitamin	SFE-SFC- MSMS Average Result (mcg/g)	SFE-SFC- MSMS RSD	Official Method Average Result (mcg/g)	Official Method RSD	% of Official Method Result
itamin	E Succinate	35200	3.5	36200	2.6	97.4
apsule	A Acetate	1560	4.9	1620	2.8	95.9
eakfast	E+E Acetate	1220	3.8	1230	3.0	99.0
Cereal	A Palmitate	12.7	3.5	12.9	3.5	98.3
itamin	K1	3140	3.9	3350	5.4	93.7
oftgel	K2-MK4	2380	5.7	2230	6.5	107
	K2-MK7	244	7.4	245	7.4	99.8
itamin Fablet	D3	115	4.7	108	6.3	106
itamin oftgel	D3	140	4.4	131	5.0	107
itamin	E Acetate	31100	3.2	32100	1.6	96.9
fablet	A Acetate	936	5.4	943	5.7	99.3
infant ormula	E Acetate	183	3.1	180	1.9	102
	E	63.2	4.3	55.9	1.4	113
	A Acetate	12.3	2.0	11.3	0.9	107
	A Palmitate	17.3	2.9	17.4	0.9	98.0
	K1	1.33	2.5	1.32	0.8	101

Part 3 UNCOMPRIMISING TECH

Eurofins Food Chemistry Testing (EFCT) followed AOAC International Guidelines for Standard Method Performance Requirements

(SMPRs[®]) are a unique and novel concept for the analytical methods community. SMPRs are voluntary consensus standards, developed by stakeholders, that prescribe the minimum analytical performance requirements for classes of analytical methods

ISO/IEC 17025 Accreditation

Mini validation Product Method Transfer Validation Custom Approach – Let's Have a Conversation

Analyte	SampleKinect NIMS Code	Eurofins On-Line (EOL) ComLIMS Code
Vitamin A	FAST_VITA	FS1BC
Vitamin D	FAST_VITD	FS1BJ
Vitamin E	FAST_VITE	FS1BK
Vitamin K	FAST_VITK	FS1BL

Our Critical Promise For A Greener Tomorrow

Thank You!

